
SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2002 1

Another Attack on A5/1
Patrik Ekdahl and Thomas Johansson

Abstract— A5/1 is a stream cipher used in the GSM standard.
Several time-memory trade-off attacks against A5/1 have been
proposed, most notably the recent attack by Biryukov, Shamir
and Wagner, which can break A5/1 in seconds using huge pre-
computation time and memory. This paper presents a completely
different attack on A5/1, based on ideas from correlation attacks.
Whereas time-memory trade-off attacks have a complexity which
is exponential with the shift register length, the complexity of the
proposed attack is almost independent of the shift register length.
Our implementation of the suggested attack breaks A5/1 in a few
minutes using 2-5 minutes of conversation plaintext.

Index Terms— A5/1, GSM, correlation attacks, cryptanalysis,
stream ciphers.

I. INTRODUCTION

A5/1 is the strong version of the encryption algorithm used
in the GSM standard to provide privacy for more than 130
million customers in the air link of their voice and data
communication. A sketch of the design of A5/1 was leaked in
1994, and the exact design was reversed engineered in 1999 by
Briceno [3] from an actual GSM telephone. A5/1 is a stream
cipher based on irregular clocking of three linear feedback
shift registers. The key size is 64 bits and the keystream is
produced by xoring the output from the three registers.

The first attacks were either “Guess-and-Determine” type of
attacks, or time-memory tradeoff attacks, requiring about

����������	�
steps of computation [4]. At Fast Software Encryption

2000, Biryukov, Shamir and Wagner [2] presented an improved
attack on A5/1, which required only a few seconds to a few
minutes computation on a PC. This attack is based on the
time-memory tradeoff attack by Golic [4], and requires storage
of about 150-300 Gbyte of precomputed data as well as a
long precomputation phase. Although this is a very impressive
attack, it is still only a time-memory trade-off attack with
expensive asymptotic behavior. If one would improve A5/1 by
simply increasing the lengths of the shift registers, say twice
as long, this kind of attack would no longer be possible to
apply in practice. Another attack was presented at Indocrypt
2000 by Biham and Dunkelman [1]. There attack breaks the
cipher within

��
���
 �	�
A5/1 clocking assuming

������
 �
bits of

keystream available, but also this attack has an expensive
asymptotic behavior. Recently, Krause [6] presented a general
attack on LFSR-based stream ciphers (having certain proper-
ties), called the BDD-based cryptanalysis. This attack requires
computational complexity of � ��� ���������������! polynomial time
operations, where

�
is a constant depending on the cipher and� is the combined shift registers length. For A5/1, the attack

This work has been presented at the IEEE International Symposium on
Information Theory (ISIT) 2001, Washington D.C., June 24 – 29, 2001.

The authors are with the Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden, " patrik,thomas # @it.lth.se.

archives
�%$'&)(*,+�&�-

, so the complexity is again exponential
in the shift registers length.

This paper presents a completely different attack on A5/1,
based on ideas from correlation attacks, see e.g., [7], [8], [5].
It exploits a bad key initialization in A5/1, the fact that the
key and the frame counter are initialized in a linear fashion.
This “bad property” enables us to launch a type of correlation
attack, which is quite powerful.

In opposite to all other attacks, this attack is (almost)
independent of the shift register lengths. Instead, it depends
on the number of times that the cipher is clocked before it
starts producing the output bits. In A5/1 this number is 100.
If this number is increased, the attack becomes weaker, and
vice versa. The resulting attack breaks A5/1 in a few minutes
without requiring any notable precomputation and without
requiring huge storage.

The paper is organized as follows. In Section II a brief
description of A5/1 is given, and in Section III we present
the model and assumptions of the attack. In Section IV we
present a basic correlation attack on A5/1. Section V refines
the ideas and gives the full attack. In Section VI we present
the simulation results for the attack, and finally, in Section VII
we give some conclusions.

II. A BRIEF DESCRIPTION OF A5/1

A GSM conversation is sent as a sequence of frames, where
one frame is sent every 4.6 millisecond. Each frame contains
114 bits representing the communication from A to B, and
another 114 bits representing the communication from B to
A. Each conversation is encrypted by a new session key . .
For each frame to be sent, the session key . is mixed with
a publicly known frame counter, denoted / � , and the result
serves as the initial state of the shift registers in the A5/1
generator. It then produces 228 bits of running key, which is
xored with the 228 bits of plaintext to produce the ciphertext.

A5/1 consists of three short binary linear feedback shift
registers (LFSRs) of lengths 19, 22, 23, denoted by R1, R2,
R3, respectively. The three LFSRs all have primitive feedback
polynomials. The running key of A5/1 is given as the XOR
of the output of the three LFSRs, as illustrated in Figure 1.

The LFSRs are clocked in an irregular fashion. It is a type of
stop/go clocking with a majority rule as follows. Each register
has a certain clocking tap, denoted 0 , 0 � , 0 - , respectively.
Each time the LFSRs are clocked, the three clocking taps 0 ,0 � , 0 - determine which of the LFSRs that are clocked. R1
and R2 are clocked, but not R3, if 0 1$ 0 �2$ 0 -�34 ; R1 and
R3 are clocked, but not R2, if 0 1$ 0 �53% 6$ 0 - ; R2 and R3
are clocked, but not R1, if 0 738 6$ 0 �9$ 0 - ; finally, R1, R2
and R3 are all clocked, if 0 :$ 0 �;$ 0 - . Note that at each
step at least two LFSRs are clocked, and that the probability
for an individual LFSR being clocked is

-=<�+
.

SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2002 2

Clockclk tap C1

clk tap C2

clk tap C3

R1 clocking control

R2 clocking control

circuit

controlling

clocking tap C1

clocking tap C2

clocking tap C3

Keystream

Shift register R2

Shift register R3

Shift register R1

R3 clocking control

Fig. 1. Schematic description of A5/1

Finally, we describe the key initialization. First, the LFSRs
are initialized to zero. They are then all clocked 64 times,
ignoring the irregular clocking, and the key bits of K are
consecutively xored in parallel to the feedback of each of the
registers.

In the second step the LFSRs are clocked 22 times, ignoring
the irregular clocking, and the successive bits from / � are
again xored in parallel to the feedback of each of the registers.
Let us call the contents of the LFSRs at this time the initial
state of the frame.

In the third step, the three registers are clocked for 100 ad-
ditional clock cycles with the irregular clocking, but ignoring
the output. Then finally, the three registers are clocked for 228
additional clock cycles with the irregular clocking, producing
the 228 bits that form the running key.

For all other details around A5/1, like feedback polynomials
etcetera, we refer to [2], where a more detailed description can
be found.

III. THE MODEL FOR CRYPTANALYSIS

As mentioned in the previous section, the mode of operation
for A5/1 is to xor the running key bits to the plaintext
to produce the ciphertext. Denote the running key by > $? � � ? � �@(�(@(.

The standard model of an attack on a stream cipher is a
known-plaintext attack. In this scenario, the attacker has access
to A bits from both the ciphertext and the plaintext and thus,
is able to deduce the A first bits of the running key > .

In GSM, the digital representation of the conversation is
split into frames of length 228 bits. The corresponding known-
plaintext assumption is now that the attacker is given access
to the running key from B different frames, each running key
of length 228 bits. The attack presented here is based on these
assumptions. Note that the frames are initialized with the same
session key . but with different frame counters / � .

Given the keystream, the goal of the proposed attack is to
recover the initial state of the running key generator. This
is called an initial state recovery attack. In the case of the
GSM system the initial state of the shift registers is a linear
combination of the publicly known frame counter and the

secret session key. By deducing the initial state, we can recover
the secret session key.

IV. A BASIC CORRELATION ATTACK

Let us start by giving some fundamental observations.
First, from the key initialization description we note that the
initial state is a linear function of . and / � . Let . $CED � � D � ��(@(�(F� D�G ��H and / � $ CJI � � I � �@(�(�(�� I �K�@H , where

D�L � I�L2MN � . Let O �� � O �� ��(�(@(be the LFSR output sequence produced
by regular clocking of R1 after the key and frame number
initialization (starting with the initial state). Similarly, letO �� � O � � �@(�(�(be the LFSR output sequence produced by regular
clocking of R2; and finally, let O
� � O
 � ��(@(�(be the LFSR output
sequence of R3, when clocked regularly. This means thatC O �� � O �� ��(@(�(F� O ��P� H forms the initial state of R1 for the given
frame and similarly for R2 and R3.

Recall the linear fashion in which the key . and the frame
number / � together form the initial state of the frame. It is
clear that the initial state of each LFSR can be expressed as a
linear function of . and / � . Given this observation, we can
write each LFSR output symbol from R1 as

O �Q $
G �R LTS �VU �L Q D�L 3

�K�R LTS �VW �L Q I�L � (1)

for some known binary constants U �L Q , X $Y ���(�(@(F��*�+
, Z\[& ,

and W �L Q , X $] ���(@(�(F�	��� , Z^[& . We introduce the notation _ �Q $` G �LTS � U �L Q D L and aI �Q $ ` �K�LTS � W �L Q I L , Zb[& . Then we can write

O �Q $ _ �Q 3 aI �Q � Z^[&)((2)

We call the sequence _ �Q the key part of sequence O �Q and the
sequence aI �Q is similarly called the frame number part of O �Q .
Of course, we can also write

_ �Q $ �P�R LTS � aU �L Q _ �L � (3)

for some known binary constants aU �L Q , X $c&)�@(�(@(F�� ed , Z^[& .Note that _ �� � _ �� � _ �� ��(@(�(is an unknown binary sequence
(
���P�

possible sequences) that remains the same for all frames
within a conversation (it depends only on . , which is fixed
during a conversation). Furthermore, aI �� � aI �� ��(�(@(�� is a known
contribution from the frame counter that is different for each
frame. Since the frame number is always known, the above
sequence aI �� � aI �� �@(�(@(�� can be calculated for each frame. For
registers R2 and R3 we can, in a similar way, write the output
symbols as

O �Q $
G �R LTS �fU �L Q D L 3

�K�R LTS �VW �L Q I L � (4)

O
Q $
G �R LTS �VU
L Q D�L 3

�K�R LTS �VW
L Q I�L � (5)

with known binary constants U �L Q � U
L Q , X $g ��@(�(�(���*,+ , Zh[& and

W �L Q � W
L Q , X $i ���(�(@(F�K��� , Zj[& . Following the notation for R1,

SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2002 3

we introduce

_ �Q $
G �R LTS � U �L Q D L � and aI �Q $ �K�R LTS � W �L Q I L � Z^[&)�

_
Q $
G �R LTS � U
L Q D L � and aI
Q $ �K�R LkS � W
L Q I L � Z^[&)�

for the key part and frame number part of the output sequencesO �Q and O
Q of registers R2 and R3. Similarly to (2) we also
write O �Q $ _ �Q 3 aI �Q � Z^[&)� (6)O
Q $ _
Q 3 aI
Q � Zb[&7((7)

Let us now present the very basic idea for a correlation
attack on A5/1. It will later be considerably refined. Let? � � ? � �@(�(@(F� ? �K��� denote the observed running key from A5/1
in a certain frame. Let us consider what is happening after the
LFSRs have received their initial values. First, the registers
will be clocked irregularly for 100 times, producing no output,
then they will be clocked once and the first output symbol will
be produced. Since each of the shift registers will clock on
average three times out of four, we can expect that after these
101 irregular clockings, each LFSR will have been clocked
about 76 times. Assume for a moment that each of the three
LFSRs has been clocked exactly 76 times. Then the produced
bit ? � is the XOR of the output of the three LFSRs,O �l G 3 O �l G 3 O
l G $? � ((8)

Since aI � � aI � ��(@(�(is a known quantity in each frame, we can
simply calculate its contribution to the output bit. From (2),
(6) and (7) we can rewrite (8) as_ �l G 3 _ �l G 3 _
l G $ aI �l G 3 aI �l G 3 aI
l G 3 ? � ((9)

Note that the right hand side contains known quantities only.
Denote the right hand side of (9) in frame m with njo � l G�p l G�p l GFp �P� .
Under the assumption that each LFSR has been clocked
exactly 76 times, we get one bit of information about the key
in frame m , since_ �l G 3 _ �l G 3 _
l G $ n6o � l G�p l G�p l G�p �P� ((10)

Of course, if the assumption is not correct we can expect
(10) to hold with probability

 q<,�
. Hence, we have identified

a correlation by calculatingr C _ �l G 3 _ �l G 3 _
l G $ n6o � l G�p l GFp l GFp �P� H $r C
assumption correct Hts 3 r C

assumption wrong Hus �<,�v((11)

The probability of all three LFSRs being clocked exactly 76
times in this case is calculated to be about

 e&7w

. Hencer C _ �l G 3 _ �l G 3 _
l G $ n6o � l G�p l GFp l GFp �P� H $x q<,�^3y �<,� s @& w
 ((12)

The left-hand-side expression _ �l G 3 _ �l G 3 _
l G remains constant
over all frames. It is not hard to show that if we have access
to a few million frames, and thus can calculate njo � l G�p l GFp l GFp �P�
for each frame, then _ �l G 3 _ �l G 3 _
l G can be determined with
high confidence.

The value of _ �l G 3 _ �l G 3 _
l G will give us one bit of
information about the key. By considering other assumed
triples for the number of clockings of the three LFSRs, we can
derive more information about the key and eventually recover
it.

V. A REFINEMENT OF THE ATTACK

The previously described attack is very simple, but has the
drawback that it requires many frames. In this section we show
how to considerably refine the attack.

Denote the produced keystream after the initialization with
the key . and the frame counter / � by z � � z � ��(@(�(. Recall
that the first 101 symbols, z � � z � ��(@(�(�� z �{�K� are discarded
during the initialization and the running key ? L is given by? � $ z �{�F� � ? � $ z ���	� �@(�(�(�� ? ���K� $ z
��K� . Consider a certain
assumed clocking triple

C UF| � � UF| � � UF|
eH of registers R1, R2 and
R3. This clocking might occur in several keystream positions,
e.g. the clocking (79,79,79) might not only end up at position @&7

but also at positions
 e&��)�� @&�-)�@(k(T(

, etc. Keystream positions
before

 @&)
are not considered since they are discarded and are

not accessible. Letr C�C UF| � � UF| � � UF|
 H in } th position H (13)

denote the probability of clocking
C UF| � � UF| � � UF|
eH occurring at

position } (i.e., keystream symbol z6~).
Given a specific clocking triple

C UF| � � U�| � � U�|
 H , we can,
calculate an interval � for } , where that clocking triple has
a non-negligible probability of occurring. So, instead of using
only one keystream position when calculating the correlation
probability as done in (11) and (12), we can use all positions
(}�[@&)

) where there is a non-negligible probability of
occurrence. In frame m we calculate a correlation probabil-
ity (implicitly conditioned on � in the m th frame), denoted� o ���J�T� p �J��� p �J��� � $ r C _ ��J�T� 3 _ � �J�k� 3 _
 �J��� $�& H , as a weighted voting
over several positions using the formula:

� o �T�J� � p �J� � p �J� � � $ R~e�q� r CPC UF| � � UF| � � UF|
 H in } th position H
s�� n6o �T�J��� p �J��� p �J��� p ~ w �{�K�K� $c&��3� �<,� s C h� R~e�q� r C�C UF| � � UF| � � UF|
 H in } th position HPH � (14)

where � � $c&�� is the indicator function which equals 1 if � $�&
and 0 otherwise. Also, njo �T�J� � p �J� � p �J� � p ~ w �{�K�K� $ aI ��J� � 3 aI ��J� � 3 aI
�J� � 3? ~ w ����� as in (9)-(10), for frame m . Finally, � is the interval
where there is a non-negligible probability of occurrence for
the clocking triple

C UF| � � U�| � � U�|
@H .If we assume that the bits entering the clock controlling
device of A5/1 are uniformly distributed independent bits, we
can write the probability (13) as a recursive formula,r CPC UF| � � UF| � � UF|
@H in } th position H $

/ C UF| � � UF| � � UF|
 � } H � (15)

SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2002 4

TABLE I

COMPARISON OF THE APPROXIMATED VALUE GIVEN BY (15) OR (16) AND

THE ESTIMATED VALUE FROM SIMULATIONS OF THE A5/1 CIPHER. ALL

VALUES SHOULD BE MULTIPLIED BY �P�q��� .���e�	� �v� Eq. (15) or Eq. (16) Estimation by
simulation

P(76,76,76,101) 9.7434 9.7331
P(79,79,79,105) 9.2012 9.2033
P(80,80,80,105) 6.6388 6.6388
P(79,80,81,106) 8.3858 8.4126
P(82,82,82,109) 8.7076 8.7269

where�:���	��� � �	�T � �	�k¡ � �q¢V£¤� if

�	�¥� £�� � �K�� £�� and

�	�k¡ £y� ��:���	� � � �	� � �	� ¡ �{¦ ¢5£�� if

�K� ��§ �
or

�	� b§ �
or

�	� ¡h§ � ��:���	��� � �	�T � �	�k¡ �{¦ ¢5£�� if

�K�¥��¨ ¦ or

�	�� b¨ ¦ or

�K�T¡©¨ ¦���:���K� � � �K� � �K� ¡ � ¦ ¢5£��ª «@¬ �:���	��� ­ � � �K�� ­ � � �	�k¡ ­ � ��¦ ­ �F¢® �,ª «@¬ �:���K� � � �	� ­ � � �	� ¡ ­ � �{¦ ­ ��¢® �,ª «@¬ �:���K� � ­ � � �	� � �	� ¡ ­ � �{¦ ­ ��¢® �,ª «@¬ �:���K�¥� ­ � � �	�� ­ � � �K�T¡ �{¦ ­ ��¢�ª
This formula will give an exact probability under the as-

sumption of independent uniformly distributed clocking bits.
We will use these probabilities to approximate the actual A5/1
case. The approximation works well when the probability is
fairly high (as in the considered cases in this paper), since we
then have several different initial states that give the desiredC UF| � � UF| � � UF|
 � } H .Under the same assumptions as above, we can give a
somewhat easier formula which gives a closed expression for
the probability in (13) asr C�C UF| � � UF| � � UF|
 H in } th position H $¯ ~~ w �J�T�P° ¯ ~ w � ~ w �J� � �~ w �J���±° ¯ ~ w � ~ w �J� � � w � ~ w �J� � �~ w �J��� °+ ~ (

(16)

The expression in (16) gives the same value as (15) for
any valid clocking triple

C UF| � � U�| � � U�|
 H in position } , e.g. it
will fail for

C &7��&7��& H in position
 e&

which cannot happen
in A5/1. Table I gives an indication of the validness of the
approximation compared to an estimated value based on 100
million simulation of the A5/1 cipher.

We give a small fictitious example to clarify (14) for
three different sequences of values njo �T�J� � p �J� � p �J� � p ~ w �����	� � } $ @&) ��� e&��v�@(k(T(T�� @&�*

.
Example 1: As presented in Figure 2, we have chosen� $³²� e&) ���(�(@(��� e&�*v´

. We see from the tabulated example
that if we calculate the sequence n1o �T�J� � p �J� � p �J� � p ~ w �����	� � } $ @&) ��� e&��v�@(k(T(T�� @&�*

, using the known frame number and the
running key > , to be only zeros in the interval � , then the
probability that the key part _ ��J� � 3 _ � �J� � 3 _
 �J� � for this specific
clocking is zero is fairly high (0.9). If we calculate the same
sequence to be only ones, the probability of the key part being
zero is low (0.1). Finally, if we have a mix of ones and zeros
we see that the zeros are observed at positions where there is
a (in total) higher probability of occurrence, so in this case we

Keystream pos. ¦
100 101 102 103 104 105 106 107

.. µ
�

µ

µ
¡

µ � µ�¶ µF· ...� �{���	��� � �K�� � �K�T¡ ¢ in ¦ th position
¢5£

0.04 0.16 0.20 0.20 0.16 0.04¸�¹ £
0 0 0 0 0 0º ¹ » ¼¾½ �K¿ ¼¾½ ��¿ ¼¾½ �KÀ £���ª Á¸ ¹ £
1 1 1 1 1 1º ¹ » ¼¾½ �K¿ ¼¾½ ��¿ ¼¾½ �KÀ £���ªÂ�¸ ¹ £
1 0 1 0 0 1º ¹ »Ã¼J½ �	¿ ¼J½ �F¿ ¼¾½ ��À £y�,ª Äq«

Fig. 2. Example of three different sequences Å ¹ »Ã¼J½ �	¿ ¼¾½ ��¿ ¼¾½ �F¿ Æ	À and the

corresponding Ç ¹ »Ã¼J½ �	¿ ¼¾½ ��¿ ¼¾½ ��À probabilities calculated according to (14).

vote for _ ��J� � 3 _ � �J� � 3 _
 �J� � being zero, due to a slightly higher
probability (0.62).

In order to use the information in all the available frames
to estimate the value of the linear combination _ ��J�T� 3 _ � �J��� 3_
 �J� � we will introduce a log-likelihood ratio. First, definea� ���J�T� p �J��� p �J��� � $ r C _ ��J� � 3 _ � �J� � 3 _
 �J� � $c& H as the total probability
that _ ��J� � 3 _ � �J� � 3 _
 �J� � $È& , taken over all frames. Recall that� o ���J� � p �J� � p �J� � � denoted the same for the m th frame only. Then
define the log-likelihood ratio É �T�J�T� p �J��� p �J�k� � of a� �T�J�T� p �J��� p �J��� � as

É �T�J� � p �J� � p �J� � � $�ÊTË a� �T�J��� p �J��� p �J��� � h� a� �T�J� � p �J� � p �J� � � � (17)

where
ÊTË

is the natural logarithm. We can now calculate an
estimate of É ���J� � p �J� � p �J� � � over all frames by calculating

É �T�J� � p �J� � p �J� � � $ÍÌR
o S �

ÊTË � o �T�J�T� p �J�k� p �J��� � ©� � o �T�J�T� p �J��� p �J��� � � (18)

where B is the number of available frames. For a log-
likelihood ratio É defined as in (17) we know that É $&

if
r C _ ��J�T� 3 _ � �J��� 3 _
 �J��� $Î& H $Ï q<��

, and ÉÑÐ &
ifr C _ ��J�T� 3 _ � �J��� 3 _
 �J��� $Ò& H Ð q<��

, and finally É �Ó&
ifr C _ ��J�T� 3 _ � �J��� 3 _
 �J��� $c& H �! q<,� .

We will now turn to specific parameter choices as we
describe the final phase of the attack. Starting at position 79,
we pick a suitable interval of length 8, Ô � $Õ²�Ö�×7��(@(�(���d�*v´

,
and look at all linear combinations of _ ��J�T� 3 _ � �J��� 3 _
 �J��� where
each of UF| � � UF| � � UF|
 runs in the interval Ô � . For each such
value of

C UF| � � UF| � � UF|
 H and for each frame m $Ø ���(@(�(F� B , we
calculate � o �T�J� � p �J� � p �J� � � and use (18) to calculate É ���J�T� p �J��� p �J��� � .
Using É �T�J�T� p �J��� p �J��� � we finally estimate the linear combination
of key bits with a simple hard decision. For example, ifÉ � l � p l � p l ��� $³�v(ÃÙ,*

we estimate _ �l � 3 _ �l � 3 _
l � $Í&
, ifÉ � l � p l � p ���K� $Ú�Û&7(×�- then _ �l � 3 _ �l � 3 _
��� $] , etc.

We note that when
C UF| � � UF| � � UF|
 H runs through all possible

values in the specified interval of size 8, this gives a system
of
d�
;$ÜÙ) e�

linear equations with
d:3¤d:3¤d�$'��+

unknown
variables. The problem of finding the correct values of the
24 unknown variables is now equivalent to the problem of
decoding a length 512 linear code of dimension 24. The

SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2002 5

estimated bits can be viewed as a received word of length 512,
and the corresponding equations are parity check equations
for the code. If we have enough frames to make the estimates
reasonably accurate, we can decode the received word and find
24 bits from the key.

Since the log-likelihood ratio É represents a soft value of the
probability, it is also possible to use a soft decoding algorithm.
A soft decoding algorithm would be expected to perform better
since it takes more advantage of the given information. We
have tried soft decoding but it did not improve the attack
notably. When the number of received frames increases, the
probability tends to either

&
or

quite fast and thus reducing
the gain of soft decoding. The reduced complexity of the hard
decoding algorithm seems to be a better choice in this case.

Table II shows the average, maximum and minimum number
of correct estimates of the 512 equations, in a run of 60
simulations, using the procedure described.

TABLE II

NUMBER OF CORRECT ESTIMATES FOR A SYSTEM OF 512 EQUATIONS.

Number of thousand frames
in the estimation (Ý).

10 30 50 70 100 200
Average: 283 293 309 320 326 354
Max: 308 307 330 347 346 378
Min: 259 283 288 303 301 339

Using the interval Ô � $Ü²�Ö�×7��(@(�(���d�*v´ we solve for the bits_ �l � �@(�(@(�� _ �� G , _ �l � ��(@(�(�� _ �� G and _
l � ��(@(�(F� _
� G from the key part
of the registers. Using (3) this will give us

d93Þd93ßd%$à��+
bits of information about the key K (in the form of linear
combinations of key bits). To fully recover the key (64 bits)
we can increase the length of the interval to 22, such that
we get

���13á���Û3¤��� Ð *,+ bits of information about the key,
which makes the decoding much harder. Instead, we propose
to pick a new subinterval Ô � $Ú²qd=Ö��@(�(@(���×,+7´ , thus recovering
another 24 bits from the key. Finally, we do the same for the
subinterval Ô
 $i²q×�Ù)��(�(@(��� e&���´ . Then we have recovered 24
bits from each shift register output and a total of 72 bits. This
is more than what we need for solving for the key K.

The computational work to check a solution consists of first
loading the estimated bits into the register, then running the
cipher backwards 79 clocks plus additional 22 clocks for the
frame number loading. Then loading the frame number in the
usual way and run the 100 premix clocks and finally checking
the generated keystream output against the received keystream.
The maximum number of output bits that we need to check is
about

*�+
, since the state space is 64 bits. The computational

work of checking a solution thus sums to one register loading
plus about

���,-Û3y*�+â$c��d=Ö
cipher clockings.

VI. SIMULATIONS OF THE ATTACK

In order to check the correctness of the attack proposed
in the previous section, we have implemented it. In a first
step, the probabilities � o �T�J�T� p �J��� p �J��� � are calculated for each framem $ã ���(@(�(F� B and UF| � � UF| � � UF|
 each in the interval � , and theÉ �T�J� � p �J� � p �J� � � log-likelihood ratios are calculated.

In a second step, the decoding in our simulations is done by
exhaustive search over all possible values of _ �L � � _ �L � � _
L � , whereX � � X � � X
 each runs through the interval � . The solution which
gives the closest Hamming distance to the received codeword
is taken as the correct solution. However, in order to have
a high probability that the correct solution is the codeword
closest in Hamming distance to the received word, we still
need quite many frames. Simulations show that when we
have fewer than about 100 000 frames there are often other
(erroneous) solutions to the system of equations that give a
closer distance. To overcome this problem we save a list of
the äxå @&�&�& closest solutions for each subinterval. Picking
one solution from each list(subinterval), we can combine them
into three 24 bit LFSR sequences as allegedly produced by the
shift registers. These sequences are then verified by running
the cipher backwards as described above.

In the case of using an interval length of 8 we need three
subintervals and the number of combinations to verify would
amount to ä
 , which is rather expensive. A more efficient way
is to use overlapping intervals where each subinterval overlaps
the previous subinterval with 2 or 3 bits. Now we only have to
verify combinations that agree in the overlapping bits. We can
also use the fact that the sequences we want to verify are 24
bits long and the shift registers are shorter. Thus, a first test if
the combined sequence could be the right, is to check whether
the last bits of the sequence fulfill the feedback polynomial of
each of the shift registers.

Using these techniques, simulations with ä $± e&�&�&
have

shown that we can reduce the number of verifications from @&�&�&�

to about

Ù�&�&�&:�æÙ�&�&�&�&
for the case when the interval

size is 8 and number of overlapping bits is 3. The different
configurations we used in our simulations are shown in Ta-
ble III.

TABLE III

CONFIGURATIONS USED IN OUR SIMULATIONS.

Interval Overlapping Intervals
size bits

7 3 ç è	éeêEë�ìKí�êKç ë�îeêEë�éKí�ê�ç ëFè@ê¾é�îKí�êç ée��êJéFè�í�ê�ç é�ìeê��P�e�{í
8 3 ç è	éeêEë�ïKí�êKç ë	ðqêEée�{í�ê�ç ë�éeê¾é�ïKí�êç é	ðqêP�P�e�{í
9 2 ç è	éeêEëFè�í�êKç ë�ïeêEé	ð	í�ê�ç é�îeê��P�e�{í

Table IV shows the success rate for different configurations
and different number of received frames. The entries are the
number of successful attacks out of a batch of 100 runs and
in parenthesis are the attack times for each configuration. The
corresponding length of the GSM conversation is also given
(although this is a known plaintext attack and would not apply
directly to the GSM system). The simulations where run on
a PC with Intel Pentium 4 processor, running at 1.8Ghz, with
512 MByte of memory using a Linux operating system.

The precomputation phase in the presented attack amounts
to calculate and store the probabilities that a certain number
of clockings of the registers appears in a certain keystream
position. These are the probabilities used in (14). Using
the same hardware as in our simulations, it takes about 15
minutes to calculate the required tables and less that 2Mb to

SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2002 6

TABLE IV

SIMULATION RESULTS USING A LIST SIZE OF ñóòô�P����� . ENTRIES SHOW

THE NUMBER OF SUCCESSES OUT OF 100 RUNS. TIME OF ATTACK IS

GIVEN IN PARENTHESIS.

Success / Number of received frames
(time of attack) (time of GSM conversation in min/sec)

30000 50000 70000
Config. (2m30s) (3m45s) (5m20s)

7/3 2/(1min) 13/(2min) 49/(3min)
8/3 2/(2min) 20/(3min) 57/(4min)
9/2 3/(3min) 33/(4min) 76/(5min)

store them. We have summarized the implemented attack in
Figure 3.

1) Pick a subinterval Ô � (e.g., Ô � $ � Ö�×7��d�*��)
2) Let

C UF| � � UF| � � UF|
 H run through the interval Ô � . For
each frame m $x ��@(�(@(F� B calculate� o �T�J� � p �J� � p �J� � � $ R~ S � r C�C UF| � � UF| � � UF|
 H in } :th pos. H

s=� n6o �T�J� � p �J� � p �J� � p ~ w ���K�K� $�&,�3á q<�� s C ^� R~ S � r CPC UF| � � UF| � � UF|
 H in } :th pos. HPH
Calculate the log-likelihood ratio of the weighted
probability over all frames

É �T�J� � p �J� � p �J� � � $ÍÌR LTS � ÊTË
� o �T�J�T� p �J��� p �J��� � h� � o �T�J�T� p �J��� p �J�k� �

Estimate the linear combination_ ��J� � 3 _ � �J� � 3 _
 �J� � $ HD
C É �T�J� � p �J� � p �J� � � H

using a hard decision (HD) on the value ofÉ �T�J� � p �J� � p �J� � � .
3) Decode the generated linear code_ ��J� � 3 _ � �J� � 3 _
 �J� � $ HD

C É �T�J� � p �J� � p �J� � � H
for
C UF| � � U�| � � U�|
 H in interval Ô � using a ML decod-

ing through exhaustive search. Save the ä closest
solutions.

4) Repeat steps 1 to 3 for each new subintervalÔ � � Ô
 ��(�(@(until totally 64 bits of the shift register
sequences are recovered.

5) Combine the solutions from each subinterval and
check the validness of the solutions.

Fig. 3. A summary of the proposed attack.

Recalling (14), the summation is taken over an interval �
where there is a non-negligible probability of occurrence of
clocking

C U�| � � UF| � � UF|
 H . Calculating the probabilities for the
highest clocking,

C e&) ��@ @&7 ��� e&) H , in the simulations, shows
that this clocking has a very small probability of occurring
beyond the } $õ �+�&

th keystream position (40th position in
the running key). So the attack only needs the first 40 bits of
the keystream in each frame. Furthermore, the frames used in

the attack need not to be consecutive.

VII. CONCLUSIONS

We have proposed a new attack on the A5/1 stream cipher,
based on an identified correlation. In contrast to previous
attacks, this is not a time-memory trade-off attack, but uses
completely different properties of the cipher. It explores the
weak key initialization which allows to separate the session
key from the frame number in binary linear expressions.

The complexity of the attack is only linear in the length
of the shift registers and depends instead on the number of
irregular clockings before the keystream is produced. The
implemented attack needs the 40 first bits from about

��� G
(possible non-consecutive) frames, which corresponds to about
5min of GSM conversation. Our implementation of the attack
shows that we have a high success rate; more than 70%.
This can be improved by using larger list size and/or larger
interval size. The complexity of the attack using the parameters
presented here is quite low and the attack can be carried
out on a modern PC in less than 5 minutes using very little
precomputation time and memory.

The improvements compared to previous work are the
following. All previous attacks have a complexity exponential
in the shift register length. The complexity of the attack
presented in this paper is roughly linear in the shift register
lengths.

Previous attacks also need either much precomputation
and/or memory or they have a high time complexity. The pro-
posed attack is simple to implement, has been implemented,
and completes its task in less than 5 minutes.

Finally, the presented attack also enlightens new interesting
design weaknesses in A5/1 that should be considered when
constructing new stream ciphers.

REFERENCES

[1] E. Biham, O. Dunkelman, “Cryptanalysis of the A5/1 GSM stream
Cipher”, Lecure Notes in Computer Science, vol. 1977, 2000, pp. 43–
51, (Indocrypt 2000).

[2] A. Biryukov, A. Shamir, D. Wagner, “Real time cryptanalysis of A5/1 on
a PC”, Lecture Notes in Computer Science, vol. 1978, 2001, pp. 1–18,
(FSE’2000).

[3] M. Briceno, I. Goldberg, D. Wagner, “A pedagogical implementation of
A5/1”, http://scard.org, May 1999.

[4] J. Golic, ’’Cryptanalysis of alleged A5 stream cipher”, Lecture Notes in
Computer Science, vol. 1233, 1997, pp. 239–255, (Eurocrypt’97).

[5] T. Johansson, F. Jönsson, “Improved fast correlation attacks on stream
ciphers via convolutional codes”, Lecture Notes in Computer Science,
vol. 1592, 1999, pp. 347-362, (Eurocrypt’99).

[6] M. Krause “BDD-based Cryptanalysis of Keystream Generators”, to
be presented at EUROCRYPT 2002, available at IACR eprint server
http://www.iacr.org.

[7] W. Meier, and O. Staffelbach, “Fast correlation attacks on certain stream
ciphers”, Journal of Cryptology, vol. 1, 1989, pp. 159–176.

[8] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryp-
tography , CRC Press, 1997.

VIII. BIOGRAPHIES

Patrik Ekdahl (S’98) was born in Malmö, Sweden, on
April 3, 1972. He received his M.Sc. in Electrical Engineering
from Lund University, Lund, Sweden in 1998. In May 1998 he
became a graduate student at the Department of Information

SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2002 7

Technology at Lund University, where he is currently working
on his Ph.D. thesis.

His research interests are mainly in cryptology, in particular
analysis and design of stream ciphers.

Thomas Johansson (S’92-M’95) was born in Ljungby,
Sweden, in 1967. He received the M.Sc. degree in computer
science in 1990 and the Ph.D. degree in information theory in
1994, both from Lund University, Lund, Sweden.

Since 1995, he has held various teaching and research po-
sitions at the Department of Information Technology at Lund
University. Since 2000, he has been Professor of Information
Theory at the same department. His scientific interests include
cryptology, error-correcting codes, and information theory.

Prof. Johansson has served on cryptologic program commit-
tees such as EUROCRYPT’98 ’00 ’01’ 02, FSE’01 ’02, etc.
He was a recipient of the SSF-JIG (Junior Individual Grant).

